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ABSTRACT

We have compiled 19 sonic and density logs from 10 oil test wells in southwestern Oregon 

to help determine the geometry and physical properties of two Cenozoic basins. Four oil test wells 

are located within the Coos Bay Basin; one lies offshore the Coos Bay Basin, and the remaining 

five wells are located within the southern Tyee Basin. These well logs sample Pleistocene to 

Eocene sedimentary (principally the Tyee and Umpqua Groups) and volcanic (Roseburg Formation 

and Siletz River ) rocks. This report presents the locations, elevations, depths, stratigraphic and 

other information about the oil test wells, provides plots showing the density and sonic velocities 

as a function of depth for each well log, and provides a simple statistical analysis of the data to 

better understand the variations in sonic velocities and densities of Cenozoic sedimentary and 

volcanic rocks in southwestern Oregon. We also calculate and present two-way travel times from 

the sonic velocity logs.
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INTRODUCTION

We describe well log data from oil test wells that supplement ongoing studies of the crustal 

structure in the vicinity of Cape Blanco, southwest Oregon (Fig. 1) [Brocher and others, 1995; 

Davis, 1995]. Seismic profiles acquired there imaged crustal structure as well as the geometry of 

the subducting Gorda Plate in southwestern Oregon (Fig. 1).

We present data from 19 sonic and density logs from 10 oil test wells in southwest Oregon, 

to categorize the sonic velocities and densities of Cenozoic sedimentary basins there (Fig. 1). Four 

of the wells are from the Coos Bay Basin, one lies offshore the Coos Bay Basin (Amoco OCS P- 

0112 No. 1), and the other five wells are from the southern Tyee Basin. The 19 well logs sample 

Pleistocene to Eocene sedimentary rocks (principally of the Tyee and Umpqua Groups) as well as 

thick sections of Eocene Siletz River Volcanics (both the upper, tuff and breccia member, and the 

lower, pillow basalt member). (For a few of the wells we retain the published stratigraphic use of 

the Roseburg Formation, an older nomenclature referring to both sedimentary and volcanic rocks.) 

Newton [1980], Olmstead and others [1989], and Ryu and others [1992, 1996] describe the Coos 

Bay and southern Tyee Basins using data from these wells, but did not discuss the sonic velocities 

and densities measured in them.

Basic information about the wells is provided in Table 1. This information includes the 

locations, elevations, and depths of the wells, as well as the lease name, well number, operator, 

and completion year. In this table the wells are ordered alphabetically. This information is taken 

from the Well History Control System (WHCS) One-line File, an on-line digital well-log database 

leased from Petroleum Information by the USGS Office of Energy Resources at Denver. Table 1 

also summarizes the lithologies and stratigraphy encountered in the holes [Rau, 1973; McNeel, 

1980a,b; 1984; Snaveley and others, 1981; Ryu and others, 1992, 1996]. Finally, Table 1 

provides information on the type of sonic and density tool used to make the log, as well as other 

tools run simultaneously (normally caliper, spontaneous potential, and gamma-ray). Many of the 

sonic logs were made with older, short tools, with short spans between the source and receivers.



WELL LOG ANALYSIS

Sonic and density logs from the onshore wells were hand digitized at non-uniform intervals 

between 3 and 30 m to capture the significant variations of the logs with depth for frequencies up 

to 2 Hz, The sampling interval was adequate to estimate linear trends in the data over these 

intervals. We note that our sampling interval was not intended and is not sufficiently dense for the 

calculation of high-frequency (say >10 Hz) synthetic seismograms. For higher-frequency 

synthetics, it would be necessary to redigitize the logs with a finer sampling interval. Logs from 

the offshore Amoco OCS P-0112 No. 1 well were digitized at 1 foot intervals.

For the sonic logs, we picked transit times as a function of depth. For the gamma-gamma 

density logs, we picked bulk density in g/cm3 as a function of depth. For the neutron density 

porosity logs, we converted the logged density porosity ((}>) back to formation density (pfd) using 

Pfd = Pm + (Pf" PmX*' wnere the matrix density pm = 2.65 g/cm3 , and the fluid density pf = 1.0 

g/cm3 [Ellis, 1987]. Roughly half of the logs analyzed here are plotted at a scale of 30.49 m = 5 

cm (100 feet = 2 inches), the remainder are plotted at a scale of 30.49 m = 2.54 cm (100 feet = 1 

inch). Depths are measured from an arbitrary reference datum, normally the Kelley Bushing 

(K.B.), located 3.65 m (12 feet) above ground level. Datum for the Amoco OCS P-0112 No. 1 is 

129 m (424 feet) above the seafloor and 22 m (72 feet) above sealevel. The downhole depths 

reported here have not been corrected for this small upward shift. Cased intervals of the wells and 

sections identified on the logs as having cycle-skipping problems were not digitized. In some 

cases data from the logs were ignored: these data were associated with washouts, thick mudcake, 

invasion of drill fluids or large deviations from the general trend of density and sonic values having 

very limited depth extent, generally less than 10 meters [Ellis, 1987]. No editing of well data from 

the Amoco OCS P-0112 well was performed.

The digitized sonic-log data were converted from transit times to velocities (m/s) and both 

the sonic- and density-log depths were converted from feet to meters. Plots showing seismic 

velocities and densities as a function of depth for each well are presented in Figures 2 to 16.



Although we digitized all repeated passes of tools in sections of the wells, we do not show these 

redundant passes in Figures 2 to 16.

The quality of the logs vary but is generally moderate to high for the sonic velocity logs. 

The caliper records for the sonic logs indicate that the well diameter is generally close to the bit size 

and relatively smooth, with the exception of the Fat Elk No. 1 well, which is out of gauge between 

1350 and 2100 feet (412 to 640 m). Caliper deviations on the sonic logs for the other logs are 

generally short, less than 30 m long. Thus, we believe the sonic velocity data reported here to be 

representative of formation velocites. Caliper records for the sonic logs for the Coos County No. 

1 and 1-7 wells are particularly smooth.

Caliper records for the density logs, on the other hand, show substantial deviations from 

the bit size. Long sections of the Amoco-Weyerhauser B-l well, the section of the Fat Elk No. 1 

well between 1350 and 2100 feet (412 to 640 m), much of the Harris No. 1-4 and the Sawyer 

Rapids No. 1 wells are substantially out of gauge or even off-scale on the density log caliper scale. 

Shorter sections of the Sutherlin Unit No. 1 well are out of gauge on the caliper scale of the density 

log. We therefore attribute the generally low average densities of the Roseburg Formation and 

Siletz River volcanics in the Fat Elk No. 1, Harris No. 1-4, and Sutherlin Unit No. 1 wells to 

these large caliper deviations (Table 2). For these wells, the higher densities shown in the logs for 

the Roseburg Formation and Siletz River Volcanics may be more representative of the formation 

density than the lower densities found in regions of large caliper deviation.

We also calculated two-way travel times from the sonic velocity logs. These curves are 

plotted in Figures 18 to 26. This calculation required us to project the sonic velocities to the 

surface. In some cases, the uppermost velocities logged in the wells were too deep to allow 

projecting the velocity to the surface. In these cases, we calculated two-way travel times beginning 

at the uppermost of the logged velocities.



REGRESSION OF THE WELL LOG DATA

Table 2 presents average sonic velocities and densities determined at all the wells for 

several formations (including the Tyee Group and younger rocks, the Umpqua Group, Roseburg 

Formation, and Siletz River Volcanics). Figure 17 shows the same information plotted as velocity 

versus density. We describe this figure more fully in the Discussion. In Tables 1 and 2 we have 

inferred the top of volcanic units from the velocity and density at two wells (Coos County No. 1 

and Westport No. 1)

At a few wells, the logs show a simple linear increase in sonic velocity with depth. These 

logs include those from Coos County No. 1-7, Harris No. 1-4, Sawyer Rapids No. 1, and 

Westport No. 1. Linear regression through the P-wave velocity data for the Coos County No. 1-7 

log yields Vp (km/s) = 2.17 + 0.918Z for the Tertiary (predominately Eocene) sedimentary rocks, 

where Z is depth in km (Fig. 3). The R2 for this regression is 0.683. Linear regression through 

the P-wave velocity data for the Westport No. 1 log yields Vp (km/s) = 2.27 + 1.569Z for the 

Coaledo Formation (Fig. 4). The R2 for this regression is 0.618. Linear regression through the P- 

wave velocity data for the Harris No. 1-4 log yields Vp (km/s) = 2.70 + 1.349Z for the entire log, 

consisting of both sedimentary and volcanic rocks (Fig. 5). The R2 for this regression is 0.574. 

Linear regression through the P-wave velocity data for the Sawyer Rapids No. 1 log yields Vp 

(km/s) = 3.43 + 0.620Z for the Eocene sedimentary rocks (Fig. 7). The R2 for this regression is 

0.515.

DATA AVAILABILITY

The picks of density and seismic velocity shown in Figures 2 to 26 are available in Excel5 

spreadsheets using anonymous ftp. The anonymous ftp address is: andreas.wr.usgs.gov. Change 

the directory (cd) to pub/outgoing/blanco. Figures 2 to 16 reside in files named 

blanco.sonic.xl5.bin and blanco.density.xl5.bin, in Mac Binary II format. Sonic and density logs 

for Amoco OCS P-0112 No. 1 are named PI 12VELX.xl5.bin and PI 12RHOX.xl5.bin. Figure 

17 is in a file named Figurel7.bin. Figures 18-26 showing calculated two-way travel times versus
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depth are located in blanco.twt.xl5.bin and PI 12VELX.xl5.bin. Table 1 of this report is also in 

this ftp site, labeled as Table 1. The text is in a WordS file named OFR98-237.text.

DISCUSSION

Velocity and density relations in Table 2 cluster into two distinct stratigraphic groups 

(Figure 17). Average velocities and densities from the sedimentary rocks lie close to the Nafe- 

Drake velocity-density curve (Nafe and Drake, 1957). The uppermost, sedimentary section of the 

Roseburg Formation, has the lowest average velocities and very low average densities (Figure 17). 

Average velocities and densities from Tyee Group and younger sedimentary rocks plot in a well- 

defined arcuate trend lying close to the Nafe-Drake curve (Nafe and Drake, 1957).

In contrast, the average velocities and densities for the volcanic units lie closer to a linear 

velocity-density relationship defined by Luetgert (1992). These volcanics include the lower section 

of the Roseburg Formation, which is correlative to the Siletz River Volcanics, and the breccia and 

pillow basalt sections of the Siletz River Volcanics. The highest average velocities and densities 

were found in the pillow basalt section of the Siletz River Volcanics (Figure 17). Due to well 

gauge problems, however, average densities at two of the wells sampling the pillow basalt 

members of the Siletz River Volcanic are too low, yielding values that are well off the empirical 

trends defined by either Nafe and Drake (1957) or Luetgert (1992).

The sedimentary rocks exhibit significant (up to 50%) regional variation in the average 

velocities and densities. For the Tyee Group and younger sedimentary rocks, average velocities 

from the wells within the Coos Bay Basin (Coos Co. No. 1 and No. 1-7, Fat Elk No. 1, and 

Westport No. 1; Fig. 1) are 0.4 to 1.4 km/s lower than those within the southern Tyee Basin 

(Table 2). Average densities of the Tyee Group and younger sedimentary rocks in the Coos Bay 

Basin are 0.09 to 0.25 g/cm3 lower than those in the southern Tyee Basin.

Logs from two wells suggest that the velocities and densities of the Umpqua Group are 

slightly lower than those in the overlying Tyee Group (Table 2; Figure 17). The cross-cutting 

trend defined by the Umpqua Group results from the low average density of the Umpqua Group at
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the Sutherlin Unit No. 1 well, which in turn was caused by the large caliper deviations along most 

of the well.
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Table 2. Average velocities and densities of geologic formations.

Well

Tyee 
and 

younger

Geologic Formation

Siletz River Volcanics
Umpqua Roseburg breccia pillow lavas

Averace Sonic Velocity

Coos County No.l 
Coos County No. 1-7 
Fat Elk No.l
Westport No. 1

Weyerhaeuser B-l 
Weyerhaeuser F-l

Harris No. 1-4
Sawyer Rapids No. 1 
Sutherlin Unit No.l

2.81 
2.99 
3.14
3.06

NA 
4.36

3.52
3.96
NA

NA 
NA 
NA
NA

NA 
NA

3.10
NA 
3.97

2.62
NA 
2.75
4.05

NA 
NA

NA
NA 
NA

Average Density

Coos County No.l 
Fat Elk No.l
Westport No.l

Weyerhaeuser B-l 
Weyerhaeuser F-l

Harris No. 1-4
Sawyer Rapids No.l 
Sutherlin Unit No.l

2.30 
2.40
2.40

2.49
2.55

2.51
2.54 
NA

NA 
NA
NA

2.43
NA

2.51
NA 
2.48

2.36
2.34
2.49

NA 
NA

NA
NA 
NA

3.81
NA 
NA
NA

NA 
NA

3.92
NA 
NA

(g/cc)

2.41
NA
NA

2.67
NA

2.45
NA 
2.48

(km/s)

4.11
NA 
NA
NA

5.50
NA

4.83
NA 
5.77

2.49*
NA
NA

2.72 
NA

2.55*
NA 

2.52*

*Low densities associated with large caliper deviations in this well.
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